Drilling Automation and Downhole Monitoring with Physics-based Models

Recorded On: 05/12/2020

The drilling industry faces challenging market conditions that motivate the use of automation to reduce costs and decrease well manufacturing variability. The objective of this presentation is to motivate automation initiatives that utilize physics-based models for predictive monitoring and control. This presentation explores current progress, challenges, and opportunities to control critical drilling conditions such as downhole pressure in Managed Pressure Drilling (MPD). The 3 essential elements of automation are explored with a perspective on recent advancements in automation due to downhole measurement availability through wired drillpipe. However, only a small fraction of drilling systems currently utilize wired drillpipe. In automated rig systems, there is additional potential to unlock the predictive capabilities of physics-based models to "see" into the near future to optimize and coordinate control actions.

A convergence of several key technologies creates an opportunity to use sophisticated mathematical models within automation. A significant challenge is the size of the physics- based models that have too many adjustable parameters or are too slow in simulation to extract actionable information. This presentation shows how fit-for-purpose models can be used directly in the automation solutions. These fit-for-purpose models have unlocked new ways to think about automation in drilling. For example, rate optimization and pressure control have traditionally been separate applications in MPD. Simulation studies suggest significant potential improvement when combining the two applications.

All content contained within this webinar is copyrighted by Dr. John Hedengren and its use and/or reproduction outside the portal requires express permission from Dr. John Hedengren.

Dr. John Hedengren

Assistant Professor, Department of Chemical Engineering, Brigham Young University

Dr. Hedengren received a PhD degree in Chemical Engineering from the University of Texas at Austin. Previously, he developed the APMonitor Optimization Suite and worked with ExxonMobil on Advanced Process Control. His primary research focuses on accelerating automation technology in drilling. Other research interests include fiber optic monitoring, Intelli-fields, reservoir optimization, and unmanned aerial systems.  In addition to drilling automation, he is a leader of the Center for Unmanned Aircraft Systems (C-UAS), applying UAV automation and optimization technology to energy infrastructure.

SPE Webinars are FREE to members courtesy of the



05/12/2020 at 9:30 AM (EDT)   |  90 minutes
05/12/2020 at 9:30 AM (EDT)   |  90 minutes
20 Questions
0.15 CEU/1.5 PDH credits  |  Certificate available
0.15 CEU/1.5 PDH credits  |  Certificate available